

CCC Annual Report UIUC, August 19, 2015

Pressure-energy Model of Tundish, Slide-gate and Nozzle Flow and Application to Avoiding Aspiration

Hyunjin Yang and Brian G. Thomas

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

- 1. Develop simple model to estimate pressure distribution in nozzle flow system:
 - Use analytical approach:
 - -> 1D pressure-energy equation with energy losses
 - -> calculate pressure distribution from Tundish top surface to Mold top surface
 - Compare with 3D turbulent two-phase computational model:
 - -> $k \epsilon$ model with wall functions for a rough wall
 - -> Eulerian-Eulerian two phase model
- 2. Propose a new nozzle design to avoid air aspiration.
 - Parametric studies with analytical model
 - Propose new SEN diameter

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Hyunjin Yang	•	5
Consortium						

Part 1.

1D Pressure-energy Model Development

1D model of pressure Distribution: Losses in the model

asting

- **1. Gamma** γ at the point (5) (ref.: Armaly et al.,1983)
- In the sudden expanded pipe turbulent flow (backward-facing step flow), the **recirculation zone size** *x*₁ is independent of the Re, but a function of geometry.
- 2D approximation is available for Re<400 and Re>6600 (belong to the latter for this case).

Determination of Model constant γ

- In case of Case 12, $f_L = 0.381$:
 - ER= $\frac{1}{f_L}$ = 2.62
 - Through the Least Square Method with the Armaly experiment data, $C_t = 2.671223 \times ER + 2.671223$
 - $C_t = 9.67$ when ER=2.62
 - $x_1 = s \times C_t = 0.48 m$
- S calculation: S=D_{lower}-L=D_{lower} (1-f_L)
- Assume, recirculation zone thickness h
 - Drops from S at (5) (plate bottom) to 0 at x_1
- Assume downward flow extends from center of recirculation zone (0.5S) to outer wall of D_{lower} :
- Define γ

$$\gamma = \frac{L}{D_{lower} - 0.5S}$$
 -> average velocity at (5) = γV_{GAP}

Hyunjin Yang

- 2. Define Chi χ at point (6) (ref.: Armaly et al., 1983)
 - Similar to γ , calculate average velocity at (6)
 - Using linear approximation for recirculation zone thickness.

Determination of Model constants $\zeta \& \beta$

3. Zeta ζ

- The original Liu's model shows ~5% slide-gate opening f_L difference to the plant data in the non-clogged conditions, and ~10% difference in the clogged conditions.
- By increasing the pressure drop by the slide-gate ρe_{Lslide} with zeta $\zeta = 1.2$, it matches better to the plant data on slide 19.

4. Beta β

• Intuitively, $\boldsymbol{\beta}$ should be in the range of

$$1 \leq \boldsymbol{\beta} \leq \frac{A_{port}}{\frac{A_{SEN,L}}{2}} = 2.173$$
 (when $D_{SEN,L} = 75mm$)

Since the port length is smaller than the port diameter, velocity drop is negligible:
 -> β = 1 is chosen.

To check 1D model works properly asting onsortiu

At the P_1 in the bottom-up approach, the pressure is calculated by

Kinetic E

(output)

$$P_1 = P_{atm} - \rho g(h_{TUN} + h_2) + \frac{1}{2}\rho V_{port}^2 + \Sigma \rho e_L$$

- We know $P_1 = P_{atm} = 0 Pa (gage)$
- So, the model is validated by checking:
 - $P_1 = 0 Pa$ or

Potential E

(input)

Geometry of the Baosteel UTN, Slidegate and SEN

Original geometry of Baosteel

Geometry	Values	Geometry	Values
UTN bore diameter D _{UTN} (upper & lower)	78 mm & 80 mm	SEN upper part bore diameter <i>D</i> _{SEN,U}	80 mm
UTN length	255 mm	SEN upper part length	40 mm
Upper plate thickness	50 mm	SEN tapered part length	40 mm
Upper plate bore diameter D_{upper}	80 mm	SEN lower part bore diameter <i>D</i> _{SEN,L}	75 mm
Slide plate thickness	25 mm	SEN lower part length	634 mm
Slide plate bore diameter D_{slide}	80 mm	Port angle	15 deg
Lower plate + Lower nozzle	80 mm	Port width × height	60 mm × 80 mm
Lower plate + Lower nozzle		Port thickness	23.5 mm
Length	Length 160 mm		0.3×1.9 m
SEN whole length	714 mm		

In the 1D analytical model, UTN upper bore diameter is assumed to 80 mm.

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Hyunjin Yang	•	15

Flow rate model to determine the slide-gate opening

1. Relation between the flow rate Q_{SEN} and the slide-gate opening f_A (Modified version based on Liu and Thomas (2012))

Part 2.

Validation: Plant vs 1D model vs Fluent

18

Gate opening comparison: Plant measurement vs Flow rate model

N o.	Grade	5ST/ 6ST	Slab geometry [m]	Casting speed V _C [m/min]	Argon flow rate Q _{gas} [SLPM]	tundish depth <i>h_{TUN}</i> [m]	slide-gate opening, F _L [%] Exp. data	slide-gate opening, F _L [%] Modified flow rate model
1	GL4G71R1	5ST	0.3×1.7	0.74	6.5	1.02	49	41.0
2	GL4G71R1	6ST	0.3×2.1	0.70	10.2	1.02	66	47.1
3	GL4G71R1	5ST	0.3×1.7	0.80	7	1.02	45	43.3
4	GL4G71R1	6ST	0.3×2.1	0.70	8.6	1.02	61	46.3
5	GL4G71R1	5ST	0.3×1.7	0.80	7	0.98	39	43.6
6	GL4G71R1	6ST	0.3×2.1	0.70	8.4	0.93	63	47.1
7	JV7Q13P6	5ST	0.3×2.1	0.70	4.2	1.02	37	44.2
8	JV7Q13P6	6ST	0.3×2.1	0.66	8.2	1.02	45	44.4
9	JV8Q13P6	5ST	0.3×2.1	0.66	4	1.10	46	41.7
10	JV8Q13P6	6ST	0.3×2.1	0.66	4.3	1.08	43	42.0
11	JU5P5CP6	5ST	0.3×1.9	0.60	6	1.03	40	38.1
12	JU5P5CP6	6ST	0.3×1.9	0.60	6	1.03	40	38.1
4	7 4 6		0/1				Data fro	m Baosteel (Ruan

 β = 1, ζ = 1.2, C = 0 (clogging constant) are used for the modified flow rate model.

•

• Case 12 is chosen for the analysis.

	clogge	d severely
Metals Processing Sim	ulation Lab	•

non-clogged

(according to the

19

•

Baosteel data)

Hyunjin Yang

clogged

University of Illinois at Urbana-Champaign

Operating condition

Operating condition & Material property of case 12

Operating condition	Values	Material property	Values
Slide-gate orientation	90 deg	Liquid steel density ρ_s	7000 kg/s
Slide-gate opening f_L	0.4	Liquid steel viscosity μ_s	0.006 Pas
Tundish depth h_{TUN}	1030 mm	Argon gas density $ ho_g$	1.6228 kg/s
Casting speed V _c	0.60 m/min	Argon gas viscosity μ_g	2.125× 10 ⁻⁵ Pas
Argon gas flow rate Qargon	6 SLPM		
Submergence depth h_{sub}	0.21 m		
Absolute roughness of the nozzle wall (ε)	1mm (Non-clogged condition)		
Hot argon gas temperature T_h	1823 K		
Hot argon gas pressure P_h	70.7 kPa (= $\rho_s g h_{TUN}$)		

•

Gate opening comparison: Plant measurement vs Flow rate model

JU5P5CP6 6ST case 12 condition

asting

Part 3.

Parametric study: Change of casting conditions

6					
13	in				
1	Ca	st	us	0	
	C	ion			

Geometry of parametric study 1

Metals Processing Simulation Lab

25

Hyunjin Yang

Parametric study 1 geometry

University of Illinois at Urbana-Champaign

Geometry	Values	Geometry	Values
UTN bore diameter D_{UTN}	80 mm	SEN upper part bore diameter D _{SEN,U}	80 mm
UTN length	255 mm	SEN upper part length	40 mm
Upper plate thickness	50 mm	SEN tapered part length	40 mm
Upper plate bore diameter D_{upper}	80 mm	SEN lower part bore	75 mm (original) 52 mm ~ 100 mm
Slide plate thickness	25 mm	diameter D _{SEN,L}	(parametric study)
Slide plate bore diameter	80 mm	SEN lower part length	714 mm
D _{slide}		Port angle	15 deg
Lower plate + Lower nozzle bore diameter D _{lower}	80 mm	Port width × height	60 mm × 80 mm
Lower plate + Lower nozzle Length	160 mm	Port thickness	23.5 mm
		Slab geometry	0.3×1.9 m

- In the 1D analytical model, UTN upper bore diameter is assumed to 80 mm.
- Only **D**_{SEN,L} is changed from the original geometry

Operating condition of parametric study 1

• Operating condition & Material property of parametric study 1

Values	Material property	Values
90 deg	Liquid steel density ρ_s	7000 kg/s
0.4 (original) 0.376~0.454	Liquid steel viscosity μ_s	0.006 Pas
(parametric study)	Argon gas density $ ho_g$	1.6228 kg/s
1030 mm	Argon gas viscosity μ_g	2.125×10 ⁻⁵ Pas
0.60 m/min		
6 SLPM		
0.21 m		
1mm (Non-clogged condition)		
1823 K		
70.7 kPa (= $\rho_s g h_{TUN}$)		
	90 deg 0.4 (original) 0.376~0.454 (parametric study) 1030 mm 0.60 m/min 6 SLPM 0.21 m 0.21 m 1mm (Non-clogged condition) 1823 K 70.7 kPa (=p_sgh_TUN)	90 degLiquid steel density ρ_s 0.4 (original) 0.376~0.454 (parametric study)Liquid steel viscosity μ_s 1030 mmArgon gas density ρ_g 1030 mmArgon gas viscosity μ_g 0.60 m/min1000 mm6 SLPM1000 mm0.21 m1000 mm1000 mm

 Same to the original operating condition except slide-gate opening *f_L* depending on the SEN lower part diameter *D*_{SEN,L}

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Hyunjin Yang	•	27

Geometry of the parametric study 2

Geometry	Values	Geometry	Values
UTN bore diameter D _{UTN}	80 mm (original) 49.1 mm ~ 100 mm (parametric)	SEN upper part bore diameter D _{SEN,U}	80 mm (original) 49.1 mm ~ 100 mm (parametric)
UTN length	255 mm	SEN upper part length	40 mm
Upper plate thickness	50 mm	SEN tapered part length	40 mm
Upper plate bore diameter D _{upper}	80 mm (original) 49.1 mm ~ 100 mm (parametric)	SEN lower part bore diameter <i>D</i> _{SEN,L}	75 mm (original) 52 mm ~ 100 mm (parametric study)
Slide plate thickness	25 mm	SEN lower part length	714 mm
Slide plate bore diameter	80 mm (original) 49 1 mm ~ 100 mm	Port angle	15 deg
D _{slide}	(parametric)	Port width \times height	60 mm × 80 mm
Lower plate + Lower nozzle bore diameter Diower	80 mm (original) 49.1 mm ~ 100 mm (parametric)	Port thickness	23.5 mm
Lower plate + Lower nozzle	160 mm	Slab geometry	0.3×1.9 m

tinuous Casting Consortium

•

Operating condition of parametric study 2

Operating condition	Values	Material property	Values
Slide-gate orientation	90 deg	Liquid steel density ρ_s	7000 kg/s
Slide-gate opening f_i	0.4 (original) 0.278~1.000	Liquid steel viscosity μ_s	0.006 Pas
	(parametric study)	Argon gas density $ ho_g$	1.6228 kg/s
Tundish depth h_{TUN}	1030 mm	Argon gas viscosity μ_g	2.125× 10 ⁻⁵ Pas
Casting speed V _C	0.60 m/min		
Argon gas flow rate Qargon	6 SLPM		
Submergence depth h_{sub}	0.21 m		
Absolute roughness of the nozzle wall (ε)	1mm (Non-clogged condition)		
Hot argon gas temperature T_h	1823 K		
Hot argon gas pressure P_h	70.7 kPa (= $\rho_s g h_{TUN}$)		

Same to the original operating condition except slide-gate opening • f_L depending on the SEN lower part diameter $D_{SEN,L}$

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Hyunjin Yang	•	31

Vary lower SEN diameter **D**_{SEN,L} (but also vary 5 other nozzle diameters to keep all 4 diameters the same). Also vary slide-gate opening f_L , (to maintain constant flow rate $Q = 0.0057m^3/s$)

Note: remove taper part of SEN

Cases	D _{SEN,L} [mm]	$f_{\it SEN}$ (friction factor)	f_L , L [mm]	f_A , A $[mm^2]$	Flow rate Q [m ³ /s]
Run 4	49.1	0.049	1.000, [49.1]	1.000, [1893]	0.0057
Run 5	58	0.047	0.612, [35.5]	0.519, [1370]	0.0057
Run 6	75	0.042	0.415, [31.1]	0.300, [1325]	0.0057
Run 7	100	0.038	0.278, [27.8]	0.168, [1323]	0.0057

(All other casting conditions are same to the previous slide table) University of Illinois at Urbana-Champaign

Fig 17. Relations between the slide-gate opening fraction f_L and the flow rate Q depending on the SEN &UTN diameter g Simulation Lab Hyunjin Yang 32 Metals Processing Simulation Lab

Mechanism

- Avoiding air aspiration due to negative pressure at the slide-gate joints requires a redistribution of the pressure drop to consume the potential energy generated by the height difference.
- Thus: increasing pressure drop below the slide-gate (by decreasing lower nozzle and SEN diameter) is advantageous due to:
 - Increased friction loss (both straight sections and "minor loss" transition regions)
 - Increased velocity (requiring converting more potential energy into kinetic energy)
- Tapering ($D_{UTN} > D_{SEN}$) is beneficial because it increases the portion of pressure drop occurring below the slide-gate.

- Pressure distribution is validated by roughly matching both a 3D numerical simulation and several plant measurements.
- Smaller SEN diameter is beneficial to decrease negative pressure.
 - Smaller SEN diameter requires a larger slide-gate opening -> less pressure drop through the slide-gate
- Apply model to typical commercial caster suggests:
 - Current SEN diameter of 75mm causes negative pressure below slide gate
 - Decreasing SEN diameter to 50mm or less (keeping other nozzle dimensions constant) should avoid negative pressure
 - Gate opening increases from 38% (75mm D_{SEN,L}) to 45% (52mm D_{SEN,L}) to maintain casting speed

Metals Processing Simulation Lab

• Decreasing all diameters together (UTN, upper plate, slide gate opening, lower plate, lower nozzle, and SEN) is not recommended because

- 1) negative pressure still arises and
- 2) this requires large increase in gate opening, which makes the system more vulnerable to clogging.

University of Illinois at Urbana-Champaign

Casting Consortium

Acknowledgments

- Continuous Casting Consortium Members (ABB, AK Steel, ArcelorMittal, Baosteel, JFE Steel Corp., Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, SSAB, ANSYS/ Fluent)
- Special thanks to Xiaoming Ruan for the plant data from Baosteel.

35

Hyunjin Yang

References

- Bai, H. and B. G. Thomas, "Effects of Clogging, Argon Injection, and Continuous Casting Conditions on Flow and Air Aspiration in Submerged Entry Nozzles," Metallurgical and Materials Transactions B, 32B:4, 707-722, 2001
- 2. Liu Rui, Brian G. Thomas, Bruce Forman and Hongbin Yin, "Transient Turbulent Flow Simulation with Water Model Validation and Application to Slide Gate Dithering," AISTech 2012, (Atlanta, GA, May 7-9, 2012), 2012
- 3. Han et al., "Sliding gate assembly and method for controlling the same", KR20120026720
- 4. B.G. Thomas ME550 (solidification) lecture note (2015)
- 5. L. F. Moody, "Friction factor for pipe flow," transactions of the ASME (1944)
- 6. White, Fluid Mechanics 7th Edition (2011)
- Armaly, B. F., F. Durst, J. C. F. Pereira, and B. Schönung. "Experimental and Theoretical Investigation of Backward-Facing Step Flow." *Journal of Fluid Mechanics* 127, no. -1 (February 1983): 473.

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Hyunjin Yang	•	37
--	---	----------------------------------	---	--------------	---	----